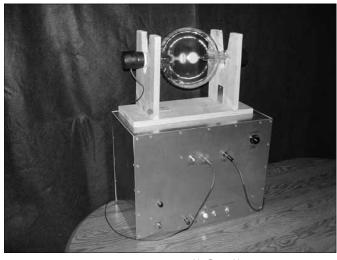
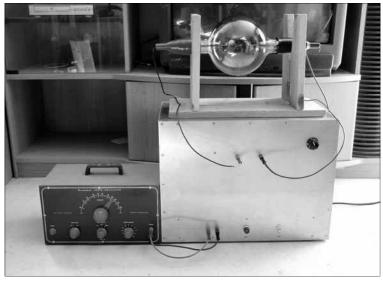


#1. First AZ-58 built in 1953

#2. AZ-58 used by Dr. Stafford


#3. Top view - AZ-58 used by Dr. Stafford

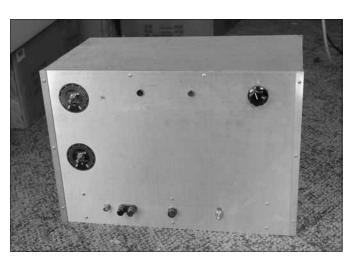

#4. One of 5 AZ-58's built by Crane & Marsh

#5. Marsh's AZ-58 update in the 1970's with a solid state audio oscillator.

#6. AZ-58 built by Jeff Garff in 2000

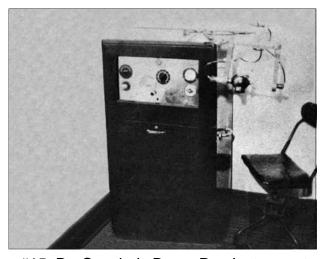
#7. AZ-58 built in 2000 hooked up to 1957 AQ –1 Heathkit frequency generator

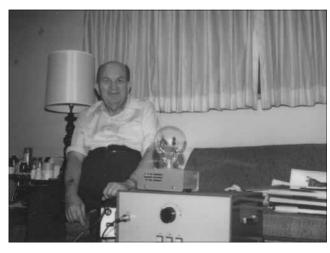
#8. 1957 AQ-1 Heathkit frequency generator


#9. Dr. Robert P. Stafford

#10. Three of the eight AZ-58's built

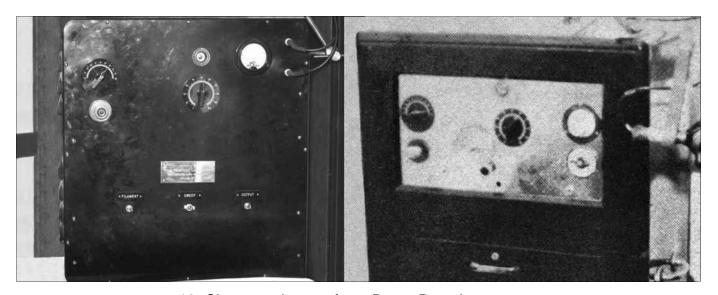
#11. Aubrey Scoon's 1940's Vern Thompson Instrument

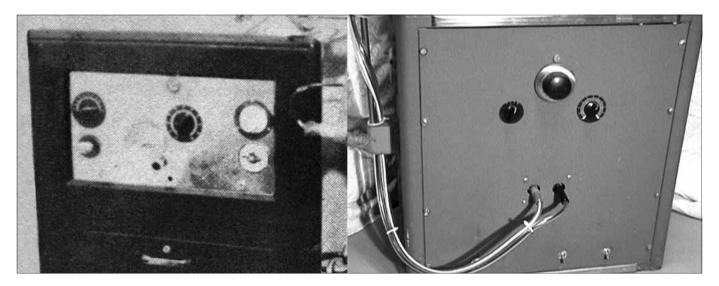

#12. Aubrey Scoon's Instrument built by Jeff Garff

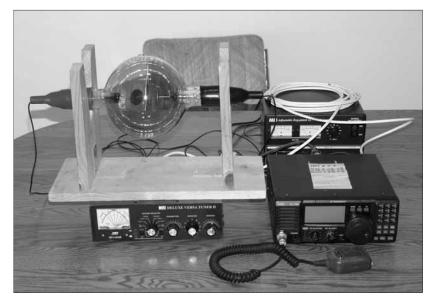

#13. Dr. Richard Hamer

#14. Dr. James B. Couche standing next to Rife

#15. Dr. Couche's Beam Ray Instrument


#16. John Marsh in the 1980's


#17. May 6, 1938 Evening Tribune article


#18. Photo used for the May 6, 1938 Evening Tribune article

#19. Close up photos of two Beam Rays instruments.

#20. Close up photos of Couche's Beam Rays instrument and Scoon's Vern Thompson instrument

#21. Icom 718

81

Bacillus X (CANCER) CARCINOMA (Rife) 11-20-32

Filterable Virus: Passes W: K Medium

motile small avaid granule highly plastic mono chromatic light angle of refraction 123/10 chan by chemical refraction Purple-red length- 1/5 u: lereadth 1/20 u

Polarity Leath rate in muliampereres 175 D.C.

Influence of X ray none

"Ultra Violet ray Slows motility

"Lufra Red none

Thermal death paint 42C. 24 hrs.

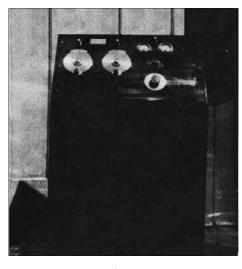
Filiment voltage 10

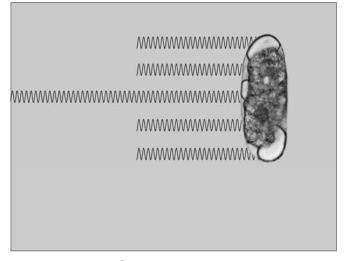
"amperage 86

Plate valtage 928

Cy cles per second 14780,000

Wane ling th of super regeneration of audion take 1750 met.


#22. Rife's BX lab note


#23. Edwin Howard Armstrong

BX Carcinoma	2128	4256	6384	8512	10640	12768	14896	17024	19152	21280 21275 *
BY Sarcoma	2008	4016	6024	8032	10040	12048	14056	16064	18072	20080 20080 *
B. Coli Rod	800	1600	2400	3200	4000	4800	5600	6400	7200	8000 8020 *
B. Coli Virus	1552	3104	4656	6208	7760	9312	10864	12416	13968	15520 17220 *
Gonorrhea	712	1424	2136	2848	3560	4272	4984	5696	6408	7120
Leprosy	600	1200	1800	2400	3000	3600	4200	4800	5400	6000 6000 *
Pneumonia	776	1552	2328	3104	3880	4656	5432	6208	6984	7760 7660 *
Staph Aureus	728	1456	2184	2912	3640	4368	5096	5824	6552	7280 7270 *
Strep Pyogenes	880	1760	2640	3520	4400	5280	6160	7040	7920	8800 8450
Streptothrix	784	1568	2352	3136	3920	4704	5488	6272	7056	7840 7870 *
Syphilis	660	1320	1980	2640	3300	3960	4620	5280	5940	6600 6600 *
Tetanus	120	240	360	480	600	720	840	960	1080	1200 1200 *
Tuberculosis Rod	803	1606	2409	3212	4015	4819	5621	6424	7227	8030 8300
Tuberculosis Virus	1552	3104	4656	6208	7760	9312	10864	12416	13968	15520 16000
Typhoid Rod	712	1424	2136	2848	3560	4272	4984	5696	6408	7120 6900
Typhoid Virus	1862	3724	5586	7448	9310	11172	13034	14896	16758	18620 18620 *

#24. Frequency graph

#25. Rife Ray #4

#26. Side band illustration

RIFE RAY MACHINE NO. 4 NAME OSCILLATOR GROUP 1 GROUP 2 S DIAL FREQUENCY S DIAL S DIAL KC BX Filterpassing 3 85.50 1604 6 18.8 6 21.0 TYPHOID Filterpassing 3 76.66 1445 6 23.2 6 26.6 TYPHOID 3 35.00 760 6 76.2 6 79.0 Rod ACTINOMYCOSIS (Streptothrix) 20.75 192 77.1 8 STAPHYLOCOCCUS 85.25 7 27.2 4 478 7 44.5 B. COLI 4 73.50 417 7 42.6 7 62.5 DIPLOCOCCUS PNEUMONIAE 75.33 7 4 427 40.0 7 59.1 BACILLUS TETANI 8 49.2 36.5 234 (Tetanus) STREPTOCOCCUS **PYOGENOUS** 3 31.00 720 6 82.2 6 86.2 BACILLUS TUBERCULOSIS 64.50 369 7 57.7 7 80.6 Rod 3 36 77,25 5 139,2

#27. Rife Ray #4 document

233

36

71.75

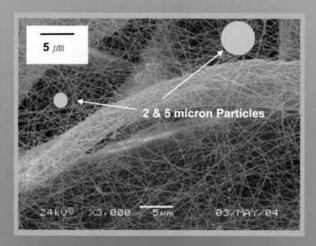
6

8

49.5

3

#28. Kendall, Johnson and Rife


What is a Nanofiber ?

A Nanofiber is 1/1000th of a micron, and a micron is 1/25,400th of an inch.

OR

A Nanofiber is 1/1000th of a micron, and a micron is 1/1000th of a millimeter.

The naked eye can see roughly 10 microns which is <u>10,000</u> times larger than a Nanofiber. The following SEM (Scanning Electron Microscope) image provides a visual depiction of the size of Nanofibers coating a substrate that was produced at our facility:

Using several different polymers, we are capable of producing "consistent" fiber diameters as small as 5 nanometers (0.005 microns). Each polymer used produces different Nanofiber characteristics and so can be tailored to specific applications; thus, we can produce fibers applicable to almost every imaginable use you can dream of.

Why use Nanofibers ?

Nanofibers have demonstrated their value in several different ways, but the primary reasons they are in great demand is due to:

- Permeability
- Performance Enhancement
- Hydrophobic and Hydrophilic characteristics

Most filtration applications require an increasingly greater focus on particle size interception due to ever decreasing size of particle scaling. Nanofibers provide a level of mechanical efficiency unattainable with existing media technologies, and with lower pressure drops than current membrane technology. Also, our Nanofibers can greatly enhance clothing water resistance and breathability, wound dressings, wipes and personal protection material. And most importantly, they can now be produced at mass production scales, thus making the technology affordable.

At Finetex Technology our vision is to become the world-leader in the non-woven Nanofiber industry, focusing on the following targets.

- To lay the cornerstone for commercialization of Nanofiber technology, and lead the industry as the first successful commercial Nanofiber supplier
- To provide Nanofiber solutions to many of the world's challenges today and in the future, with the goal of improving quality of life
- To protect humanity and preserve our natural resources through environmentally friendly business activities